

Threshold Strategy for a Leaking Corner-Free Hamilton-Jacobi **Reachability with Decomposed Computations**

Chong He, Mugilan Mariappan, Keval Vora, and Mo Chen

BACKGROUND: HAMILTON-JACOBI REACHABILITY

Implicit Surface Function (0 sublevel set is the target set):

$$z\in\mathcal{T}\leftrightarrow \ell(z)\leq 0$$

• System Dynamics: $\dot{z} = f(z) + g(z) \cdot u$

• Trajectory: $\ell(\zeta(0; z, t, u(\cdot)))$

Value Functions:

Liveness problem: $V(z, t) = \min \mathcal{E}(\zeta(0; z, t, u(\cdot)))$ Safety problem: $V(z, t) = \max_{u(\cdot) \in \mathbb{U}} \mathcal{E}(\zeta(0; z, t, u(\cdot)))$

Backward computation with HJ-PDE (Grid-based Dynamic Programming):

Liveness problem:
$$V(z, t - \delta t) = V(z, t) + \min_{\dot{z}} D_z V(z, t) \dot{z} \delta t$$
,

Safety problem: $V(z, t - \delta t) = V(z, t) + \max_{z} D_z V(z, t) \dot{z} \delta t$, V(z, 0) = l(z)

Backward Reachable Set (BRS):

$$z \in \mathcal{R}(t) \leftrightarrow V(z,t) \leq 0$$

· Computationally expensive due to the curse of dimensionality

PROBLEM: LEAKING CORNER ISSUE

Definition: (Leaking Corners) Suppose we obtain V(z,t) by solving HJ-PDE, and $\hat{V}(z,t)$ by combining value functions. The set of "leaking corners" $\mathcal{L}(t)$ is defined as

$$\mathcal{L}(t) = \{z : V(z,t) \neq \hat{V}(z,t)\}$$
 2 Cases will suffer from the issue:

(1) Intersection case for liveness problem: $\hat{V}_R(z,t) = \max\{V_{R,1}(x_1,t), V_{R,2}(x_2,t)\}$

(2) Union case for safety problem: $\hat{V}_{A}(z,t) = \min\{V_{A,1}(x_1,t), V_{A,2}(x_2,t)\}$

METHOD: THRESHOLD STRATEGY

Theorem 1: We can find the set of leaking corners $\mathcal{L}(t)$ by comparing the (full-dimensional) sub-value functions.

$$\mathcal{L}(t) = \{ z : |V_1 - V_2| < \Delta \}.$$

The value of Δ is

$$\Delta = \begin{cases} |\tilde{V}_1^* - V_1|, & \text{if } V_{R,2} \ge V_{R,1} \text{ or } V_{A,1} \ge V_{A,2} \\ |\tilde{V}_2^* - V_2|, & \text{if } V_{R,1} \ge V_{R,2} \text{ or } V_{A,2} \ge V_{A,1}. \end{cases}$$

EXAMPLE METHOD SUFFERS FROM THE LEAKING CORNER ISSUE

Self-contained Subsystem Decomposition

- Computation happens in low dimensions
- Solution to the Curse of Dimensionality

• Full-dimensional system: 2D Single Integrator

$$\dot{z} = \begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \begin{bmatrix} u_x \\ u_y \end{bmatrix}$$

Control Input:

BRS

Target

$$u = (u_x, u_y)$$
; constrained by $c(u) = ||u||_2 - \bar{u} \le 0$

Value Function: V(z, t)

Algorithm 1: Local updating procedure

• Subsystem 1:

$$\dot{x}_1 = \dot{x} = u_x$$

Control Input:

 $w_x = u_x$; constrained by $c_1(w_x) = ||u_x||_2 - \bar{u} \le 0$

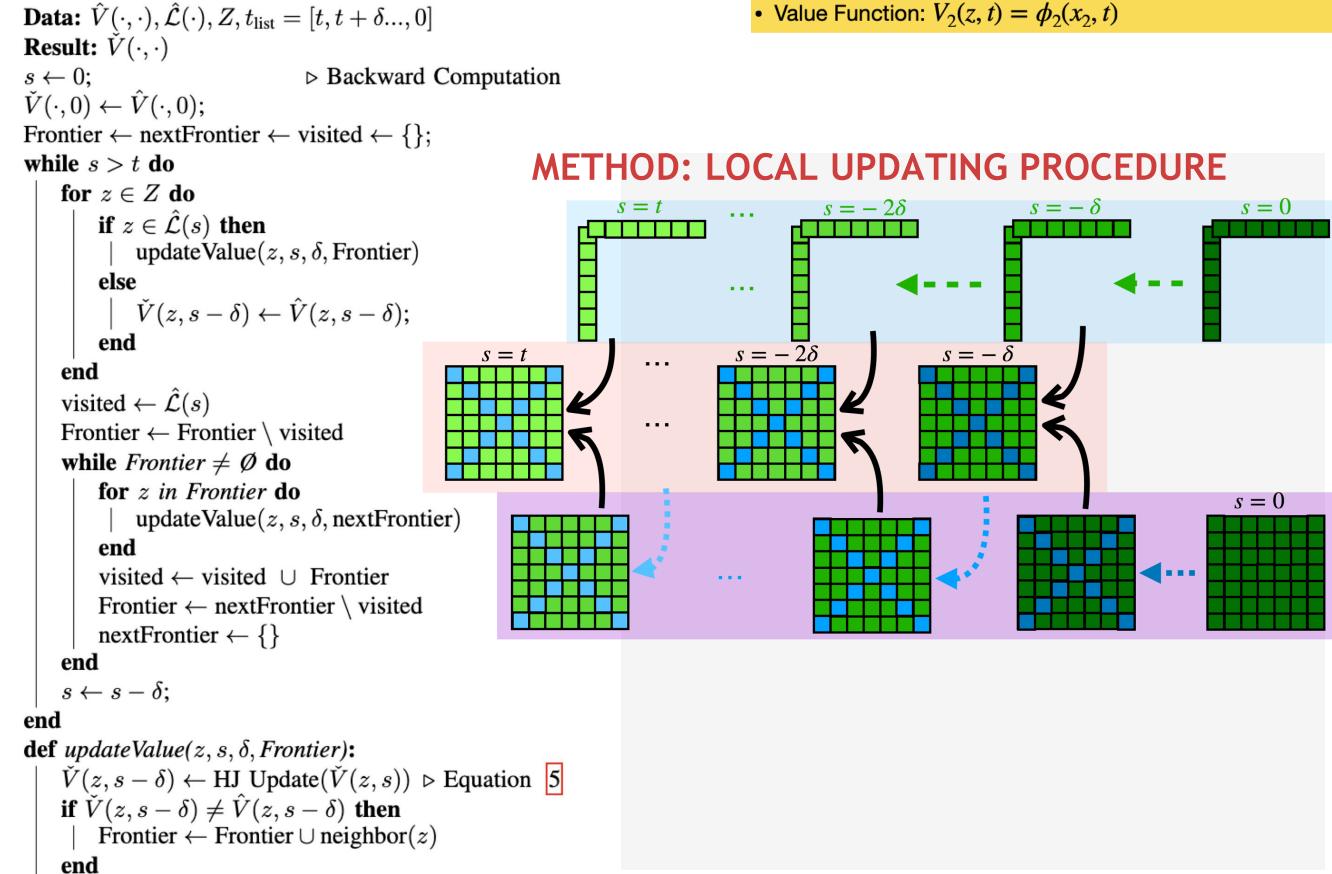
• Value Function: $V_1(z,t) = \phi_1(x_1,t)$

Subsystem 2:

$$\dot{x}_2 = \dot{y} = u_v$$

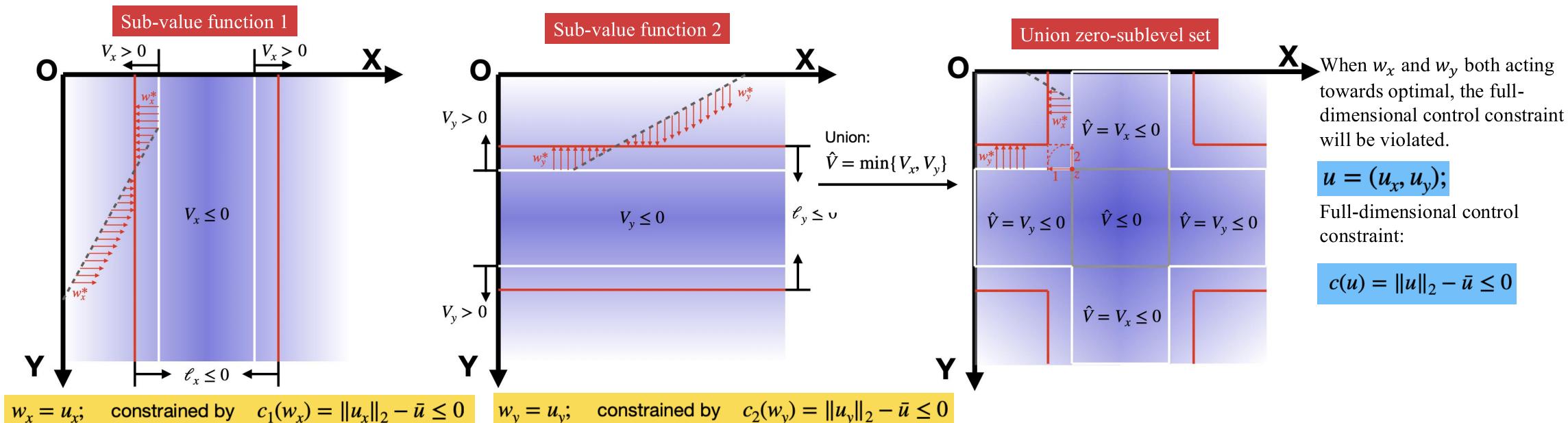
Control Input:

$$w_y = u_y$$
; constrained by $c_2(w_y) = \|u_y\|_2 - \bar{u} \le 0$



CONTROL INCONSISTENCY IN UNION SET- CAUSE OF THE LEAKING CORNER ISSUE

Avoiding zero-sublevel set



RESULT (2D SINGLE INTEGRATOR)

TARIE I. 2D Accuracy Comparison for One Ster

Metric	Before	After
Number of grid points with different values from the ground truth	200	0
Average absolute difference from ground truth	1.2×10^{-4}	9.51×10^{-18}
Maximum absolute difference from ground truth	2×10^{-2}	2.22×10^{-16}

Metric	Before	After
Number of states with different values from the ground truth	1344	0
Average absolute difference from ground truth	2.5×10^{-3}	1×10^{-9}
Maximum absolute difference from ground truth	7.39×10^{-2}	2.44×10^{-8}

TABLE II: 2D Time Comparison for One Step

Process	Time (seconds)	
Direct computation	3.3×10^{-2}	
SCSD computation + HJ	$7 \times 10^{-4} + 1.3 \times 10^{-3} =$	
local update computation	2.0×10^{-3}	

X0 XO

TABLE IV: 2D Time Comparison for 10 Steps

Process	Time (seconds)
Direct computation	3.36×10^{-1}
SCSD computation + HJ	$4.72 \times 10^{-3} + 1.61 \times 10^{-1}$
local update computation	1.65×10^{-1}

RESULT (6D PLANAR QUADROTOR)

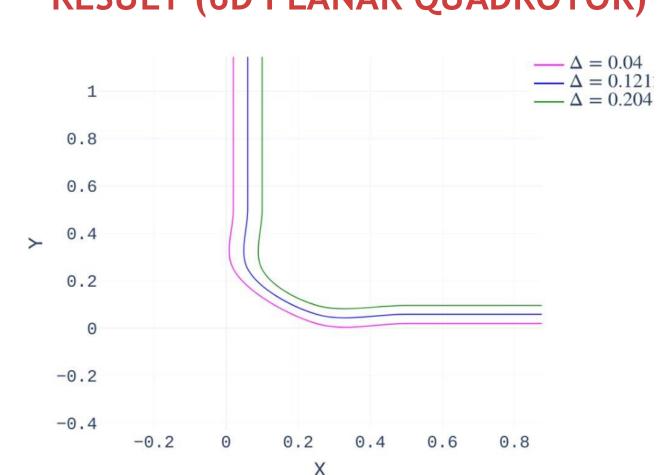


TABLE VI: Computation Time and Delta Value for ts

t (s)	Δ	Decomposition Time + Local Up- dating Time (seconds)
-0.02	0.04	2.447 + 47.1078 = 49.5548
-0.06	0.1212	6.769 + 157.3528 = 164.1218
-0.1	0.204	11.8038 + 250.7859 = 262.5897

